Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.112
Filter
2.
PLoS One ; 19(5): e0303290, 2024.
Article in English | MEDLINE | ID: mdl-38743680

ABSTRACT

Genike, the imatinib (IM)-alpha form is widely used in the treatment of gastrointestinal stromal tumor (GIST) patients in China. We wanted to investigate whether there are differences in IM plasma concentrations, adverse events, health-related quality of life (QOL) and outcomes between patients treated with Genike and Glivec. Thirty included GIST patients receiving IM treatment were matched to either Genike or Glivec according to gastrectomy, body weight, body surface area and sex. There was no statistically significant difference in IM trough plasma levels between the two groups. There were no significant differences in very common adverse events of IM between the Genike and Glivec groups. IM was well tolerated, although it was associated with a significant change in cognitive function (P < 0.001), fatigue (P = 0.015), pain (P = 0.015), nausea/vomiting (P = 0.029), insomnia (P = 0.019), diarrhea (P = 0.003) and financial difficulties (P < 0.001). Physical functioning, financial burden and insomnia were significantly different between the two groups (P = 0.026). Until Aug. 2022, there was no significant difference in time to imatinib treatment failure (TTF) between the two groups. In conclusion, there was no difference in IM plasma concentration and adverse events between Genike and Glivec. Both Genike and Glivec could partially decrease the QOL of GIST patients. Physical functioning was worse in Genike group than in Glivec group, while the economic burden and symptoms of insomnia in Glivec patients were worse. There was no significant difference in TTF between the two groups.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Imatinib Mesylate , Quality of Life , Humans , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/blood , Imatinib Mesylate/therapeutic use , Imatinib Mesylate/adverse effects , Female , Male , Middle Aged , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Adult , Treatment Outcome , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/blood , Case-Control Studies
4.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612806

ABSTRACT

N6-methyladenosine (m6A) is essential for RNA metabolism in cells. The YTH domain, conserved in the kingdom of Eukaryotes, acts as an m6A reader that binds m6A-containing RNA. In plants, the YTH domain is involved in plant hormone signaling, stress response regulation, RNA stability, translation, and differentiation. However, little is known about the YTH genes in tea-oil tree, which can produce edible oil with high nutritional value. This study aims to identify and characterize the YTH domains within the tea-oil tree (Camellia chekiangoleosa Hu) genome to predict their potential role in development and stress regulation. In this study, 10 members of the YTH family containing the YTH domain named CchYTH1-10 were identified from C. chekiangoleosa. Through analysis of their physical and chemical properties and prediction of subcellular localization, it is known that most family members are located in the nucleus and may have liquid-liquid phase separation. Analysis of cis-acting elements in the CchYTH promoter region revealed that these genes could be closely related to abiotic stress and hormones. The results of expression profiling show that the CchYTH genes were differentially expressed in different tissues, and their expression levels change under drought stress. Overall, these findings could provide a foundation for future research regarding CchYTHs in C. chekiangoleosa and enrich the world in terms of epigenetic mark m6A in forest trees.


Subject(s)
Camellia , Camellia/genetics , Cell Differentiation , Droughts , RNA , Tea
5.
World J Gastrointest Oncol ; 16(4): 1281-1295, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660643

ABSTRACT

BACKGROUND: Gastric cancer (GC) is the fifth most common and the fourth most lethal malignant tumour in the world. Most patients are already in the advanced stage when they are diagnosed, which also leads to poor overall survival. The effect of postoperative adjuvant chemotherapy for advanced GC is unsatisfactory with a high rate of distant metastasis and local recurrence. AIM: To investigate the safety and efficacy of a programmed cell death 1 (PD-1) inhibitor combined with oxaliplatin and S-1 (SOX) in the treatment of Borrmann large type III and IV GCs. METHODS: A retrospective analysis (IRB-2022-371) was performed on 89 patients with Borrmann large type III and IV GCs who received neoadjuvant therapy (NAT) from January 2020 to December 2021. According to the different neoadjuvant treatment regimens, the patients were divided into the SOX group (61 patients) and the PD-1 + SOX (P-SOX) group (28 patients). RESULTS: The pathological response (tumor regression grade 0/1) in the P-SOX group was significantly higher than that in the SOX group (42.86% vs 18.03%, P = 0.013). The incidence of ypN0 in the P-SOX group was higher than that in the SOX group (39.29% vs 19.67%, P = 0.05). The use of PD-1 inhibitors was an independent factor affecting tumor regression grade. Meanwhile, the use of PD-1 did not increase postoperative complications or the adverse effects of NAT. CONCLUSION: A PD-1 inhibitor combined with SOX could significantly improve the rate of tumour regression during NAT for patients with Borrmann large type III and IV GCs.

6.
Can J Cardiol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670457

ABSTRACT

BACKGROUND: Intravascular lithotripsy is effective and safe for managing coronary calcification; however, available devices are limited, and complex lesions have been excluded in previous studies. This study aimed to investigate the effectiveness and safety of a novel intravascular lithotripsy system for severe calcification in a population with complex lesions. METHODS: CALCI-CRACK (ChiCTR2100052058) is a prospective, single-arm, multicenter study. The primary endpoint was the procedural success rate. Major safety endpoints included major adverse cardiovascular events (MACE) and target lesion failure (TLF) at 30 days and 6 months, and severe angiographic complications. Calcification morphology was assessed in the optical coherence tomography (OCT) subgroup. RESULTS: In total, 242 patients from 15 high-volume Chinese centers were enrolled, including 26.45% of patients with true bifurcation lesions, 3.31% with severely tortuous vessels, and 2.48% with chronic total occlusion, respectively. The procedural success rate was 95.04% (95% confidence interval 91.50-97.41%), exceeding the pre-specified performance goal of 83.4% (p<0.001). The 30-day and 6-month MACE rates were 4.13% and 4.55%, respectively. TLF rates at these time-points were 1.24% and 1.65%, respectively. Severe angiographic complications occurred in 0.42% of patients. In the OCT subgroup (n=93), 93.55% of calcified lesions were fractured, and minimal lumen area increased from 1.55 ± 0.55 mm2 to 4.91 ± 1.22 mm2 after stent implantation, with acute gain rate of 245 ± 102%. CONCLUSIONS: The novel intravascular lithotripsy system is effective and safe for managing severely calcified coronary lesions in a cohort that included true bifurcation lesions, severely tortuous vessels, and chronic total occlusion. (ChiCTR2100052058).

7.
Article in English | MEDLINE | ID: mdl-38671153

ABSTRACT

To provide reference and theoretical guidance for establishing human body dynamics models and studying biomechanical vibration behavior, this study aimed to develop and verify a computational model of a three-dimensional seated human body with detailed anatomical structure under complex biomechanical characteristics to investigate dynamic characteristics and internal vibration behaviors of the human body. Fifty modes of a seated human body were extracted by modal method. The intervertebral disc and head motions under uniaxial white noise excitation (between 0 and 20 Hz at 1.0, 0.5 and 0.5 m/s2 r.m.s. for vertical, fore-aft and lateral direction, respectively) were computed by random response analysis method. It was found that there were many modes of the seated human body in the low-frequency range, and the modes that had a great impact on seated human vibration were mainly distributed below 13 Hz. The responses of different positions of the spine varied greatly under the fore-aft and lateral excitation, but the maximum stress was distributed in the lumbar under different excitations, which could explain why drivers were prone to lower back pain after prolonged driving. Moreover, there was a large vibration coupling between the vertical and fore-aft direction of an upright seated human body, while the vibration couplings between the lateral and other directions were very small. Overall, the study could provide new insights into not only the overall dynamic characteristics of the human body, but also the internal local motion and biomechanical characteristics under different excitations.

8.
Inorg Chem ; 63(17): 7746-7753, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38609344

ABSTRACT

A novel two-dimensional (2D) Hofmann-type coordination polymer, {FeII(PyHbim)2[Pd(CN)4]}·2CH3OH [1·2CH3OH, PyHbim = 2-(4-pyridyl)benzimidazole], has been synthesized, which can undergo a spontaneous guest exchange, transforming to 1·2H2O in a single-crystal-to-single-crystal (SCSC) manner, shifting from orthorhombic Cmmm to monoclinic C2/m involving the displacement of 2D layers. The solvent-induced SCSC transformation process was reversible and verified through powder X-ray diffraction (PXRD) and single-crystal X-ray crystallography analyses. Both 1·2CH3OH and 1·2H2O exhibit complete and abrupt spin crossover (SCO) behaviors in two steps, while their SCO temperature ranges drastically shift by ca.100 K, spanning room temperature, owing to different intermolecular interactions resulting from diverse interlayer packing manners and host-guest interactions. Besides, a structural phase transition is observed in 1·2CH3OH, contributing to the two-step spin transition.

9.
Ying Yong Sheng Tai Xue Bao ; 35(3): 597-605, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646746

ABSTRACT

We investigated the inter- and intra-species differences of leaf vein traits of three dominant Quercus species, Q. wutaishanica, Q. aliena var. acutiserrata, and Q. variabilis of Niubeiling (subtropical humid climate) and Taohuagou (warm temperate semi-humid climate), located in the eastern and western Qinling Mountains. The nine examined leaf vein traits included primary leaf vein width, secondary leaf vein width, mean fine vein width, primary vein density, fine vein density, vein areole diameter, areole density, 3D fine vein surface area, and fine vein volume. We further elucidated the influencing mechanisms and regulatory pathways of biotic and abiotic factors on leaf vein traits. The results showed that species identity had significant effects on eight out of nine leaf vein traits except 3D fine vein surface area, while habitat had significant effects on primary leaf vein width, secondary leaf vein width, vein areole diameter, fine vein density, and areole density. Altitude had significant effects on primary vein density, mean fine vein width, vein areole diameter, fine vein density and areole density. Habitat, tree species identity, and altitude had significantly interactive effects on primary leaf vein density, 3D fine vein surface area, and fine vein volume. There were significant differences in primary leaf vein width, mean fine vein width, areole density, 3D fine vein surface area, fine vein volume, primary vein density of Q. wutaishanica between the two studied habitats, but the differences were only found in secondary leaf vein width and areole density of Q. aliena var. acutiserrata and Q. variabilis. The examined leaf vein traits were influenced both by biotic and abiotic factors, with varying effect sizes. Among the biotic factors, petiole length, leaf length and width ratio had strong effect on leaf vein traits. Among the abiotic factors, climatic and soil factors had high effect size on vein traits, with the former being higher than the latter. Leaf vein traits were affected directly by biotic factors, but indirectly by abiotic factors (soil and climatic factors) via regulating biotic factors (leaf stoichiometry and leaf phenotypic traits).


Subject(s)
Ecosystem , Plant Leaves , Quercus , Quercus/anatomy & histology , Plant Leaves/anatomy & histology , China , Species Specificity , Altitude
10.
Ying Yong Sheng Tai Xue Bao ; 35(3): 622-630, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646749

ABSTRACT

Soil nitrogen and phosphorus are two key elements limiting tree growth in subtropical areas. Understanding the regulation of soil microorganisms on nitrogen and phosphorus nutrition is beneficial to reveal maintenance mechanism of soil fertility in plantations. We analyzed the characteristics of soil nitrogen and phosphorus fractions, soil microbial community composition and function, and their relationship across three stands of two-layered Cunninghumia lanceolata + Phoebe bournei with different ages (4, 7 and 11 a) and the pure C. lanceolata plantation. The results showed that the contents of most soil phosphorus fractions increased with increasing two-layered stand age. The increase in active phosphorus fractions with increasing stand age was dominated by the inorganic phosphorus (9.9%-159.0%), while the stable phosphorus was dominated by the organic phosphorus (7.1%-328.4%). The content of soil inorganic and organic nitrogen also increased with increasing two-layered stand age, with NH4+-N and acid hydrolyzed ammonium N contents showing the strongest enhancement, by 152.9% and 80.2%, respectively. With the increase of stand age, the composition and functional groups of bacterial and fungal communities were significantly different, and the relative abundance of some dominant microbial genera (such as Acidothermus, Saitozyma and Mortierella) increased. The relative abundance of phosphorus solubilization and mineralization function genes, nitrogen nitrification function and aerobic ammonia oxidation function genes tended to increase. The functional taxa of fungi explained 48.9% variation of different phosphorus fractions. The conversion of pure plantations to two-layered mixed plantation affected soil phosphorus fractions transformation via changing the functional groups of saprophytes (litter saprophytes and soil saprophytes). Changes in fungal community composition explained 45.0% variation of different nitrogen fractions. Some key genera (e.g., Saitozyma and Mortierella) play a key role in promoting soil nitrogen transformation and accumulation. Therefore, the conversion of pure C. lanceolata plantation to two-layered C. lanceolata + P. bournei plantation was conducive to improving soil nitrogen and phosphorus availability. Bacteria and fungi played important roles in the transformation process of soil nitrogen and phosphorus forms, with greater contribution of soil fungi.


Subject(s)
Nitrogen , Phosphorus , Soil Microbiology , Soil , Phosphorus/analysis , Nitrogen/analysis , Nitrogen/metabolism , Soil/chemistry , Cunninghamia/growth & development , China , Bacteria/classification , Bacteria/growth & development , Bacteria/metabolism
11.
Immunology ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637948

ABSTRACT

Immune cell infiltration is a significant pathological process in abdominal aortic aneurysms (AAA). T cells, particularly CD4+ T cells, are essential immune cells responsible for substantial infiltration of the aorta. Regulatory T cells (Tregs) in AAA have been identified as tissue-specific; however, the time, location, and mechanism of acquiring the tissue-specific phenotype are still unknown. Using single-cell RNA sequencing (scRNA-seq) on CD4+ T cells from the AAA aorta and spleen, we discovered heterogeneity among CD4+ T cells and identified activated, proliferating and developed aorta Tregs. These Tregs originate in the peripheral tissues and acquire the tissue-specific phenotype in the aorta. The identification of precursors for Tregs in AAA provides new insight into the pathogenesis of AAA.

12.
Article in English | MEDLINE | ID: mdl-38622421

ABSTRACT

The quantification of green space green plot ratio (GPR) is mostly based on estimation formulas, and the leaf area index (LAI) estimation values in these estimation formulas have not been well verified by measured LAI values, resulting in errors and uncertainties in GPR quantification results. This study aims to address this gap by measuring the LAI of 113 regional plants in Chongqing, China, following a standardized measurement path for digital hemispherical photography (DHP). The results indicate that the optimal relative exposure value (REV) was - 1 under overcast conditions and - 2 under sunny and cloudy conditions. Among the threshold algorithms for hemispherical images, the Intermodes algorithm in ImageJ was the best. The LAI of regional plants is highest in summer, followed by spring and autumn, and lowest in winter. Tree height (h) and crown width (w) are key factors affecting LAI, but the LAI also varies with plant species. Overall, the LAI of evergreen trees is higher than that of deciduous trees. The LAI of evergreen trees and shrubs with a height shorter than 5 m is the largest, and that of deciduous trees and shrubs with a crown width larger than 8 m is the largest. The study further verified that the existing GPR estimation formula exhibited large errors in Chongqing, while there was a strong correlation (R2 = 0.973) between the GPR estimation value and the measured value. A conversion formula was developed to reduce estimation biases, and the corrected formula is capable of estimating GPR values more accurately when actual LAI measurements are insufficient. Overall, this study verifies the significance of measuring localized LAI values, promotes the understanding of LAI suitability for GPR calculations, and provides an empirical formula for GPR estimation in Chongqing, China.

13.
Waste Manag ; 180: 106-114, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38564911

ABSTRACT

Treating food waste using black soldier fly larvae (BSFL) is widely regarded as a promising nature-based measure. This study explored the influence of food waste particle sizes on substrate properties and its subsequent effects on bioconversion efficiency and gut microbiota. The results indicated that particle sizes mainly ranging from 4 mm to 10 mm (T1) significantly increased the weight loss rate of food waste by 35 % and larval biomass by 38 % compared to those in T4 (particle sizes mostly less than 2 mm) and promoted the bioconversion of carbon and nitrogen into larvae and gases. Investigation of substrates properties indicated that the final pH value of T1 was 7.79 ± 0.10, with Anaerococcus as the predominant substrate microorganism (relative abundance: 57.4 %), while T4 exhibited a final pH value of 5.71 ± 0.24, with Lactobacillus as the dominant microorganism (relative abundance: 95.2 %). Correlation analysis between substrate chemical properties and microbial community structure unveiled a strong relationship between substrate pH and the relative abundance of Anaerococcus and Lactobacillus. Furthermore, beneficial microorganisms such as Lactobacillus and Enterococcus colonized the BSFL gut of T1, while pathogenic bacterium Morganella, detrimental to BSFL gut function, was enriched in T4 (relative abundance: 60.9 %). Nevertheless, PCA analysis indicated that alterations in the gut microbial community structure may not be attributed to the substrate microorganisms. This study establishes particle size as a crucial parameter for BSFL bioconversion and advances understanding of the relationship between gut microbiota and substrate microbiota.


Subject(s)
Diptera , Gastrointestinal Microbiome , Refuse Disposal , Animals , Larva , Food
14.
Stem Cell Res Ther ; 15(1): 95, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566259

ABSTRACT

BACKGROUND: Human adipose stromal cells-derived extracellular vesicles (haMSC-EVs) have been shown to alleviate inflammation in acute lung injury (ALI) animal models. However, there are few systemic studies on clinical-grade haMSC-EVs. Our study aimed to investigate the manufacturing, quality control (QC) and preclinical safety of clinical-grade haMSC-EVs. METHODS: haMSC-EVs were isolated from the conditioned medium of human adipose MSCs incubated in 2D containers. Purification was performed by PEG precipitation and differential centrifugation. Characterizations were conducted by nanoparticle tracking analysis, transmission electron microscopy (TEM), Western blotting, nanoflow cytometry analysis, and the TNF-α inhibition ratio of macrophage [after stimulated by lipopolysaccharide (LPS)]. RNA-seq and proteomic analysis with liquid chromatography tandem mass spectrometry (LC-MS/MS) were used to inspect the lot-to-lot consistency of the EV products. Repeated toxicity was evaluated in rats after administration using trace liquid endotracheal nebulizers for 28 days, and respiratory toxicity was evaluated 24 h after the first administration. In vivo therapeutic effects were assessed in an LPS-induced ALI/ acute respiratory distress syndrome (ARDS) rat model. RESULTS: The quality criteria have been standardized. In a stability study, haMSC-EVs were found to remain stable after 6 months of storage at - 80°C, 3 months at - 20 °C, and 6 h at room temperature. The microRNA profile and proteome of haMSC-EVs demonstrated suitable lot-to-lot consistency, further suggesting the stability of the production processes. Intratracheally administered 1.5 × 108 particles/rat/day for four weeks elicited no significant toxicity in rats. In LPS-induced ALI/ARDS model rats, intratracheally administered haMSC-EVs alleviated lung injury, possibly by reducing the serum level of inflammatory factors. CONCLUSION: haMSC-EVs, as an off-shelf drug, have suitable stability and lot-to-lot consistency. Intratracheally administered haMSC-EVs demonstrated excellent safety at the tested dosages in systematic preclinical toxicity studies. Intratracheally administered haMSC-EVs improved the lung function and exerted anti-inflammatory effects on LPS-induced ALI/ARDS model rats.


Subject(s)
Acute Lung Injury , Extracellular Vesicles , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , Rats , Animals , Chromatography, Liquid , Proteomics , Lipopolysaccharides/pharmacology , Tandem Mass Spectrometry , Acute Lung Injury/therapy , Respiratory Distress Syndrome/therapy , Obesity , Quality Control , Extracellular Vesicles/physiology , Mesenchymal Stem Cells/physiology
15.
Bioorg Chem ; 147: 107333, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38599055

ABSTRACT

To promote the development and exploitation of novel antifungal agents, a series of thiazol-2-ylbenzamide derivatives (3A-3V) and thiazole-2-ylbenzimidoyl chloride derivatives (4A-4V) were designed and selective synthesis. The bioassay results showed that most of the target compounds exhibited excellent in vitro antifungal activities against five plant pathogenic fungi (Valsa mali, Sclerotinia scleotiorum, Botrytis cinerea, Rhizoctonia solani and Trichoderma viride). The antifungal effects of compounds 3B (EC50 = 0.72 mg/L) and 4B (EC50 = 0.65 mg/L) against S. scleotiorum were comparable to succinate dehydrogenase inhibitors (SDHIs) thifluzamide (EC50 = 1.08 mg/L) and boscalid (EC50 = 0.78 mg/L). Especially, compounds 3B (EC50 = 0.87 mg/L) and 4B (EC50 = 1.08 mg/L) showed higher activity against R. solani than boscalid (EC50 = 2.25 mg/L). In vivo experiments in rice leaves revealed that compounds 3B (86.8 %) and 4B (85.3 %) exhibited excellent protective activities against R. solani comparable to thifluzamide (88.5 %). Scanning electron microscopy (SEM) results exhibited that compounds 3B and 4B dramatically disrupted the typical structure and morphology of R. solani mycelium. Molecular docking demonstrated that compounds 3B and 4B had significant interactions with succinate dehydrogenase (SDH). Meanwhile, SDH inhibition assay results further proved their potential as SDHIs. In addition, acute oral toxicity tests on A. mellifera L. showed only low toxicity for compounds 3B and 4B to A. mellifera L. populations. These results suggested that these two series of compounds had merit for further investigation as potential low-risk agricultural SDHI fungicides.

16.
Adv Sci (Weinh) ; 11(18): e2307899, 2024 May.
Article in English | MEDLINE | ID: mdl-38460164

ABSTRACT

Gastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies. However, the mechanistic role of USP7 has not been fully elucidated, and currently, no USP7 inhibitors have been approved for clinical use. In this study, DHPO is identified as a potent USP7 inhibitor for GC treatment through in silico screening. DHPO demonstrates significant anti-tumor activity in vitro, inhibiting cell viability and clonogenic ability, and preventing tumor migration and invasion. In vivo studies using orthotopic gastric tumor mouse models validate DHPO's efficacy in suppressing tumor growth and metastasis without significant toxicity. Mechanistically, DHPO inhibition triggers ferroptosis, evidenced by mitochondrial alterations, lipid Reactive Oxygen Species (ROS), Malondialdehyde (MDA) accumulation, and iron overload. Further investigations unveil USP7's regulation of Stearoyl-CoA Desaturase (SCD) through deubiquitination, linking USP7 inhibition to SCD degradation and ferroptosis induction. Overall, this study identifies USP7 as a key player in ferroptosis of GC, elucidates DHPO's inhibitory mechanisms, and highlights its potential for GC treatment by inducing ferroptosis through SCD regulation.


Subject(s)
Ferroptosis , Stearoyl-CoA Desaturase , Stomach Neoplasms , Ubiquitin-Specific Peptidase 7 , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Ferroptosis/drug effects , Ferroptosis/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Animals , Mice , Humans , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Cell Line, Tumor , Disease Models, Animal
17.
Ying Yong Sheng Tai Xue Bao ; 35(2): 289-297, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523085

ABSTRACT

To explore potential responses of ecosystem carbon density to changes of community structure during natural regeneration of woody plants, we analyzed the relationships between ecosystem carbon density and its components, tree species diversity, structural diversity (CVDBH) and spatial structure parameters (mingling, aggregation, dominance, crowding) of Cunninghamia lanceolata forests with different sprouting densities (1154, 847 and 465 individuals·hm-2) at the early stage of succession in Baishanzu National Park. The results showed that tree species diversity (species richness index and Shannon diversity index) increased with the decrease of sprouting density of C. lanceolata. Among the stand structural parameters, CVDBH, stand density, and mingling increased with the decrease of sprouting density of C. lanceolata. The stand distribution pattern of different C. lanceolata densities was uniform, with sub-dominant stand growth status and relatively dense status. The carbon density of tree layer under high, medium, and low sprouting densities of C. lanceolata were 57.56, 56.12 and 46.54 t·hm-2, soil carbon density were 104.35, 122.71 and 142.00 t·hm-2, and the total carbon density of ecosystem were 164.59, 182.41 and 190.13 t·hm-2, respectively. There was little variation in carbon density of understory layer and litter layer among different treatments. The carbon density distribution characteristics of different C. lanceolata densities were following the order of soil layer (63.4%-74.7%) > tree layer (24.5%-35.0%) > understory layer and litter layer (0.8%-2.0%). The results of variance partitioning analysis indicated that the change of tree layer carbon density was mainly influenced by stand structure diversity, soil layer carbon density was influenced by both tree species diversity and stand structure diversity, while ecosystem carbon density was mainly influenced by tree species diversity. Stand spatial structure parameters had a relatively little effect on ecosystem carbon density and its components. The sprouting density of C. lanceolata significantly affected ecosystem carbon accumulation during the conversion from C. lanceolata plantations to natural forests. A lower remaining density of C. lanceolata (about 500 individuals·hm-2) was more conducive to forest carbon sequestration.


Subject(s)
Cunninghamia , Ecosystem , Humans , Carbon/chemistry , Forests , Trees , Soil/chemistry , China
18.
Biomed Pharmacother ; 173: 116342, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430635

ABSTRACT

BACKGROUND: Neuroinflammation is responsible for neuropsychiatric dysfunction following acute brain injury and neurodegenerative diseases. This study describes how a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor FG-4592 prevents the lipopolysaccharide (LPS)-induced acute neuroinflammation in microglia. METHODS: The distribution of FG-4592 in mouse brain tissues was determined by collision-induced dissociation tandem mass spectrometry. Microglial activation in the hippocampus was analyzed by immunofluorescence. Moreover, we determined the activation of HIF-1 and nuclear factor-κB (NF-κB) signaling pathways, proinflammatory responses using molecular biological techniques. Transcriptome sequencing and BNIP3 silencing were conducted to explore signaling pathway and molecular mechanisms underlying FG-4592 anti-inflammatory activity. RESULTS: FG-4592 was transported into the brain tissues and LPS increased its transportation. FG-4592 promoted the expression of HIF-1α and induced the downstream gene transcription in the hippocampus. Administration with FG-4592 significantly inhibited microglial hyperactivation and decreased proinflammatory cytokine levels following LPS treatment in the hippocampus. The LPS-induced inflammatory responses and the NF-κB signaling pathway were also downregulated by FG-4592 pretreatment in microglial cells. Mechanistically, Venn diagram analysis of transcriptomic changes of BV2 cells identified that BNIP3 was a shared and common differentially expressed gene among different treatment groups. FG-4592 markedly upregulated the protein levels of BNIP3 in microglia. Importantly, BNIP3 knockdown aggravated the LPS-stimulated inflammatory responses and partially reversed the protection of FG-4592 against microglial inflammatory signaling and microglial activation in the mouse hippocampus. CONCLUSIONS: FG-4592 alleviates neuroinflammation through facilitating microglial HIF-1/BNIP3 signaling pathway in mice. Targeting HIF-PHD/HIF-1/BNIP3 axis is a promising strategy for the development of anti-neuroinflammation drugs.


Subject(s)
NF-kappa B , Prolyl-Hydroxylase Inhibitors , Mice , Animals , NF-kappa B/metabolism , Microglia/metabolism , Prolyl-Hydroxylase Inhibitors/metabolism , Neuroinflammatory Diseases , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Signal Transduction , Hypoxia-Inducible Factor 1/metabolism
19.
J Pediatr Orthop ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38533533

ABSTRACT

BACKGROUND: The shape of the labrum is strongly correlated with outcomes of developmental dysplasia of the hip (DDH). Magnetic resonance imaging (MRI) is the generally preferred imaging technique for observing the labrum. PURPOSE: We aimed to find a correlation between the labrum shape and anterior-posterior (AP) pelvic measurements in children with DDH. METHODS: Preoperative AP pelvic x-ray radiographs and MRI of patients with DDH from January 2019 to December 2021 were retrospectively collected and divided into three groups by labrum shape on MRI: everted, partly inverted, and inverted. The acetabular length ratio (RAL) in patients with unilateral DDH and the ratio of acetabular length to interpedicular distance (RALI) in all patients were calculated. T-tests were used to analyze differences between the groups. Receiver operating characteristic curve (ROC) analysis was performed between the everted group and the partly inverted and inverted groups. RESULTS: We found significant differences in RAL between the everted and partly inverted groups, everted and inverted groups, and everted and combined groups. The ROC analysis showed that the best cutoff value for RAL was 0.945 between the everted and combined groups, with an area under the curve (AUC) of 88.4%. The sensitivity at the best RAL value was 0.783, and the specificity was 0.887. Moreover, we observed a significant difference in RALI between the everted, partly inverted, and inverted groups, as well as between the everted and combined groups. The optimal cutoff value for RALI between the everted and combined groups was 0.575, with an AUC of 74.5%. The sensitivity at the best RALI value was 0.765, and the specificity was 0.674. CONCLUSION: The RAL or RALI values on pelvic AP radiographs can be used to predict the shape of the labrum. LEVEL OF EVIDENCE: III.

20.
J Colloid Interface Sci ; 664: 838-847, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493649

ABSTRACT

Photoelectrochemical (PEC) water splitting has been widely investigated for solar-to-hydrogen conversion. However, issues like high charge recombination rate and slow surface water oxidation kinetics severely hinder its (PEC) conversion efficiency. Herein, we constructed MOF-derived CoOOH cocatalyst on BiVO4 photoanode, using a feasible electrochemical activation strategy. The BiVO4-based photoanode obtained shows a high photocurrent density of 3.15 mA/cm2 at 1.23 VRHE and low onset potential. Detailed experiments and theoretical calculations show that during the activation of CoZn-MOFs, there was a partial breakage of 2-methylimidazole (mIM) linker, an increase in the oxidation state of Cobalt ion (Co), and increased O2-. The high PEC performance is mainly attributed to the MOF-derived CoOOH, which provides rich active sites for hole extraction and reduces the overpotential for oxygen evolution reaction. Furthermore, when CoZnNiFe-LDHs were decorated on BiVO4 using the ions exchange method, the photocurrent density of BiVO4/CoZnNiFe-LDHs photoanode got to 4.0 mA/cm2 at 1.23 VRHE, accompanied with high stability. This study provides insights into understanding the key role played by the structural transformation of MOF cocatalyst in PEC water splitting processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...